首页> 外文OA文献 >Instance-Aware Hashing for Multi-Label Image Retrieval
【2h】

Instance-Aware Hashing for Multi-Label Image Retrieval

机译:用于多标签图像检索的实例感知哈希

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Similarity-preserving hashing is a commonly used method for nearest neighboursearch in large-scale image retrieval. For image retrieval, deep-networks-basedhashing methods are appealing since they can simultaneously learn effectiveimage representations and compact hash codes. This paper focuses ondeep-networks-based hashing for multi-label images, each of which may containobjects of multiple categories. In most existing hashing methods, each image isrepresented by one piece of hash code, which is referred to as semantichashing. This setting may be suboptimal for multi-label image retrieval. Tosolve this problem, we propose a deep architecture that learns\textbf{instance-aware} image representations for multi-label image data, whichare organized in multiple groups, with each group containing the features forone category. The instance-aware representations not only bring advantages tosemantic hashing, but also can be used in category-aware hashing, in which animage is represented by multiple pieces of hash codes and each piece of codecorresponds to a category. Extensive evaluations conducted on several benchmarkdatasets demonstrate that, for both semantic hashing and category-awarehashing, the proposed method shows substantial improvement over thestate-of-the-art supervised and unsupervised hashing methods.
机译:保留相似性哈希是大规模图像检索中最近邻搜索的常用方法。对于图像检索,基于深度网络的哈希方法很有吸引力,因为它们可以同时学习有效的图像表示形式和紧凑的哈希码。本文重点研究基于多标签图像的基于深度网络的哈希,每个图像都可能包含多个类别的对象。在大多数现有的散列方法中,每个图像由一段散列码表示,这被称为语义散列。对于多标签图像检索,此设置可能不是最佳的。为解决此问题,我们提出了一种深度结构,该结构可学习\ textbf {instance-aware}多标签图像数据的图像表示形式,这些图像表示形式分为多个组,每个组包含一个类别的功能。实例感知表示不仅带来语义哈希的优势,而且可用于类别感知哈希,其中图像由多个哈希码表示,每个代码对应于一个类别。在几个基准数据集上进行的广泛评估表明,对于语义哈希和类别感知哈希,所提出的方法均显示出相对于最新的有监督和无监督哈希方法的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号